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We study the Random Cluster Model on Z
d for p near either 0 or 1 and for all q > 0

and we prove by mean of cluster expansion methods the analyticity of the pressure and
finite connectivities in both regimes. These results are valid also in the regime q < 1
and they imply that percolation probability is strictly less than 1.
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1. INTRODUCTION

The Random Cluster Model (RCM) is a stochastic process introduced in
the early ’70 by Fortuin and Kastelyn(4) which had a very relevant impact in
probability and statistical mechanics. The process is initially defined on a finite
graph. Each edge of the graph can be open or closed, and the process depends on
two parameters, namely p and q, representing respectively the weight of each open
edge of the graph and the weight of each connected component of open edges of
the graph. The process is then defined on a countably infinite graph, by studying
the limit of suitably chosen sequences of finite sub-graphs with suitably chosen
boundary conditions. Varying the parameters p and q some of the most popular
systems in statistical mechanics (e.g. Ising and Potts model) and probability (e.g.
Bernoulli percolation) may be recovered.

The RCM has been mainly investigated when the underlying graph is the
regular cubic lattice Z

d , but during the last decade a growing interest about RCM
and related statistical mechanics systems on general graphs has emerged.
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Few results on RCM can be proved for all the values of the parameters q
and p. In particular, the existence of the pressure, its independency on boundary
conditions and its differentiability have been proved in ref. 6 for Z

d , and for a
certain class of general graphs in ref. 10. This shows that the whole machinery
of the statistical mechanics, and its probabilistic counterpart, can be used for all
the values of the parameters of the RCM. However the study of the statistical
mechanics properties of RCM has been developed so far only in the region q ≥ 1
where the powerful tool given by the so-called FKG inequalities is available. In
particular, by comparison inequalities (see refs. 1, 4 and 5), is possible to prove
that, for q ≥ 1, it exists a critical value pc(q) < 1 such that for p < pc(q) the
probability to have a infinite open cluster is zero, while for p > pc(q) is one (ref. 1,
Theorem 4.2). Many other important results can be collected for the RCM on Z

d in
the regime q ≥ 1. We refer the reader to the monograph(5) for a detailed description
of these results and references. We list here only the results about the exponential
decay of connectivity because they are directly related with our results. In the
supercritical phase (up to the slab percolation threshold in d ≥ 3), the exponential
decay of finite connectivities follows from the renormalization group techniques
developed in ref. 2. Concerning the p small regime, the exponential decay of
connectivities can be obtained by comparison inequalities (see e.g. Theorem 3.2
in refs. 5) and using the known results on Bernoulli bond percolation and/or Potts
model.

None of the latter results has been proved when q < 1, since the FKG in-
equalities are not valid anymore in this regime. It is possible to use the comparison
inequalities also in the region q < 1 to obtain exponential bounds on the decay
of the connectivity functions for p sufficiently small (see ref. 1, 5 and 7). Note
however that the same device wouldn’t work to derive the exponential decay in
the q < 1 and p large regime for finite connectivities, since these are neither
increasing nor decreasing functions (in the FKG sense).

In this paper we study the statistical mechanics behavior of the RCM Z
d

(d ≥ 2) for p near either 0 or 1 and for all q > 0. We prove by mean of cluster
expansion methods the analyticity of the pressure and finite connectivities in both
regimes. Namely, for the subcritical regime we obtain that, for any fixed value of
q > 0 there is εq > 0 such that, for p in the disk | p |< εq , the pressure and n-point
connectivity functions of the RCM on Z

d exist and can be written explicitly as
analytic functions of p. For the supercritical regime we obtain that, for any fixed
value of q > 0 there is δq > 0 such that for any p in the disk |1 − p |< δq , the
pressure and the n-point finite connectivity functions of the RCM on Z

d exist and
can be written explicitly as analytic functions of 1 − p.

One of the main motivations of the present paper was to shade some light on
obscurity of the regime q < 1 of the RCM in Z

d , whose investigation has been
neglected in the literature mainly due to the fact that the Potts models are at the
values q = 1, 2, . . ., but also due to the lack of validity of the FKG inequality
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(see comments at the beginning of Section 3.6 in ref. 5). The methods based on
analyticity bypass obstacles due to troubles of probabilistic origin and indeed, at
least in the region of convergence of the expansion, gives very detailed information
about the relevant quantities, which may be used to catch also some general aspects
of the behavior of the system in the regime q < 1. The analyticity is a new result
also in the regime q ≥ 1, but here of course its utility is more questionable, given
the huge amount of information about the model one can get via probabilistic
methods based on FKG inequalities.

Taking advantages on the robustness and flexibility of cluster expansion
techniques, the analysis of analyticity of RCM could also be extended to a class
of graph much more general than the regular lattices like Z

d . We plan to do this
in a future paper.

The p near zero expansion is an “high temperature” expansion very similar to
the one developed recently for the antiferromagnetic Potts model on graphs,(16,14)

while the p near 1 expansion is a “low temperature” expansion, generalizing (to
q �= 1) the expansion developed in ref. 2 and 15 for percolation in Z

d . Another
low temperature contour expansion for RCM has been previously developed in
ref. 11 (and references therein), however for a quite different situation respect to
the one we consider here. In ref. 11, authors works very close to the critical point
(taking the parameter q very large to raise the temperature), while we are very far
from it.

From analyticity also follows immediately that connectivities decay exponen-
tially and we can estimate the inverse correlation length in both regimes p small
and p large. For | p |< εq we find that the inverse correlation length behaves as
| ln(p/q) | + O(1). For |1 − p |< δq the inverse correlation length (of the finite
connectivity) behaves as 2(d − 1) | ln(1 − p) | +O(1).

Analyticity results above also allow to extend the Theorem 4.2. in ref. 1
for values of q in the interval 0 < q < 1. Namely, Theorems 3.1 and 4.4 below
immediately imply that for the RCM on Z

d , it exists a critical value 0 < pc(q) < 1
such that for p < pc(q) the probability to have a infinite open cluster is zero, while
for p > pc(q) is one, and this is true for any q > 0.

The paper is organized as follows. In Section 2 we give some definitions
and we introduce the model. In Section 3 we study the highly subcritical phase.
At the beginning of this section we resume our results concerning the phase p
sufficiently small (Theorem 3.1), The rest of the section is devoted to the proof of
this theorem. More specifically, in Section 3.2. we construct a polymer expansion of
connectivity functions and the pressure in the supercritical regime. In Section 3.3.
we prove that this expansion is absolutely convergent for p sufficiently small. In
Section 4 we perform the analysis of the supercritical phase. Namely, in Section 4.1.
we give some more definitions and properties about cut sets in Z

d . At the end of
the subsection, we state the results on the supercritical phase (Theorem 4.4). In
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Section 4.2 we construct the polymer expansion for the connectivity functions. In
Section 4.3 we show that this expansion is absolutely convergent for p sufficiently
near 1.

2. THE MODEL

For any finite or countable set V , we will denote by |V | the cardinality of V .
We denote by P2(V ) the set of all subsets U ⊂ V such that |U |= 2. A graph is a
pair G = (V, E) with V being a countable set, and E ⊂ P2(V ). The elements of
V are called vertices of G and the elements of E are called edges of G. A graph
G = (V, E) is finite if |V |< ∞, and infinite otherwise. If V ′ ⊆ V and E ′ ⊆ E ,
then G ′ is a subgraph of G, written as G ′ ⊆ G. A graph G = (V, E) is connected
if for any pair B, C of subsets of V such that B ∪ C = V and B ∩ C = ∅, there
is an edge e ∈ E such that e ∩ B �= ∅ and e ∩ C �= ∅. A graph G = (V, E) is a
called a tree if it is connected and | E |=|V | −1. Given G = (V, E) and R ⊂ V ,
let E |R= {{x, y} ∈ E : x ∈ R, y ∈ R}. Then the graph G |R= (R, E |R) is called
the the restriction of G to R. We say that R ⊂ V is connected if G |R is connected.
Analogously, Given G = (V, E) connected and η ⊂ E , let V |η= {x ∈ V : x ∈
e for some e ∈ η}. We call V |η the support of η. We say that a edge set η ∈ E is
connected if the graph g = (V |η, η) is connected.

We regard the d-dimensional cubic lattice as the infinite graph L
d = (V, E)

with vertex set V = Z
d = {x = (x1, . . . , xd ) : xi ∈ Z} and edge set formed by

all the nearest neighbor pairs, i.e., E = {e = {x, y} ⊂ V :| x − y |= 1} where |
x − y |= ∑d

i=1 | xi − yi | is the graph distance.
For any non empty R ⊂ V, the set ∂e R = {e ∈ E :| e ∩ R |= 1} is called the

(edge) boundary of R. The set ∂ int
v R = {x ∈ R :| {x} ∩ ∂e R |= 1} is called the

internal vertex boundary of R. Given X ⊂ V, the minimal tree distance of X is
defined as d tree(X ) = minτ∈TX

∑
{x,y}∈τ | x − y | where TX is the set of trees with

vertex set X . Note that d tree(X ) =| X | −1 if X is connected. We will denote by
�N the square box of size 2N + 1 in Z

d centered at the origin.
We define initially the model on a finite V ⊂ Z

d . Let G = L
d |V = (V, E)

with E = E |V . For each edge e ∈ E we define a binary random variable ω(e),
which can assume the values ω(e) = 1 (open edge) and ω(e) = 0 (closed edge). A
configuration ω of the process is a function ω : E → {0, 1} : e → ω(e). We call
�V the configuration space, i.e. the set of all possible configurations of random
variables ω(e) at the edges e ∈ E of the graph G. Given ω ∈ �V we denote by
O(ω) the subset of E given by O(ω) = {e ∈ E : ω(e) = 1} and by C(ω) the set
C(ω) = {e ∈ E : ω(e) = 0}. An open connected component g of ω is a connected
subgraph g = (Vg, Eg) of G such that Eg �= ∅, ω(e) = 1 for all e ∈ Eg , and
ω(e) = 0 for all e ∈ ∂g, where ∂g = {e ∈ E − Eg : e ∩ Vg �= ∅}. A vertex x ∈ V
such that ω(e) = 0 for all e adjacent to x is an isolated vertex of ω. The probability
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PV (ω) to see the system in the configuration ω ∈ �V is defined as

PV (ω) = 1

ZV (p, q)
p|O(ω)|(1 − p)|C(ω)|qk(ω)

where p ∈ (0, 1), q ∈ (0,∞), and k(ω) is the number of connected open compo-
nents of the configuration ω plus the number of isolated vertices; the normalization
constant ZV (p, q), usually called the partition function of the system, is given by

ZV (p, q) =
∑

ω∈�V

p|O(ω)|(1 − p)|C(ω)|qk(ω) (2.1)

The “pressure” of the system is defined as the following function

πV (p, q) = 1

| V | ln ZV (p, q)

In order to define the RCM on L
d , we will need to introduce the concept of

boundary condition. Let � be the set of all configurations in L
d , i.e. the set of

all functions ω such that ω : E → {0, 1}. Let V ⊂ V a finite set and let L
d |V be

the restriction of L
d to V . Given now ξ ∈ �, let �

ξ

V the (finite) subset of � of all
configurations ω ∈ � such that ω(e) = ξ (e) for e �∈ E |V . For ω ∈ �

ξ

V , let us also
denote by ωV the restriction of ω on E |V . Note that ωV does not depend on ξ . We
now denote Pξ

V the random cluster probability measure in �
ξ

V on the finite sub-
graph L

d |V of the d-dimensional cubic lattice L
d with boundary conditions ξ as

Pξ

V (ω) = 1

Z ξ

V (p, q)
p|O(ωV )|(1 − p)|C(ωV )|qkξ

V (ω) (2.2)

where Z ξ

V (p, q) is the partition function given by

Z ξ

V (p, q) =
∑

ω∈�
ξ

V

p|O(ωV )|(1 − p)|C(ωV )|qkξ

V (ω) (2.3)

and kξ

V (ω) is the number of finite connected open component (open clusters) of
the configuration ω (which agrees with ξ outside V ) which intersect V plus the
number of isolated vertices in V . Note that kξ

V (ω) is the only term in (2.2) and
(2.3) depending on boundary conditions ξ .

Two extremal boundary conditions play a central role, namely the free bound-
ary condition, in which ξ (e) = 0 for all e ∈ E and the wired boundary condition,
in which ξ (e) = 1 for all e ∈ E. According to the definition above, for a fixed
configuration ω with ξ = 0 outside V the number k0(ω) is actually the number
of open components in the finite sub graph L

d |V plus the isolated vertices in V ,
while if ξ = 1 outside V , all open components in L

d |V which touch the bound-
ary has not to be counted computing the number k1(ω), since they belong to the
infinite open cluster. Thus k1(ω) is actually the number of finite open connected
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component in ω which does not touch the boundary plus isolated vertices which
does not belong to the boundary.

It is important to remark here that in the above definition of kξ

V (ω) we
compute only the finite connected components because we are adopting the so
called “infinity-wired boundary condition” convention, see e.g. Definition 2.1
in ref. 10 or Section 2.3 in ref. 9. By this convention, all infinite open clusters
eventually intersecting V are counted as one, i.e., as if all these clusters were
connected at infinity (wired at infinity). In the literature one can also find the so-
called “infinity-free boundary condition” convention, in which all open clusters,
whether finite or infinite, are counted in the number k(ω). In this case all infinite
clusters intersecting V are regarded as separate. This is e.g. the convention adopted
in the survey.(5) In the rest of the paper we will only consider the free (ξ = 0)
and wired (ξ = 1) boundary conditions, for which “infinity-free convention” and
“infinity-wired convention” are equivalent and we adopted the latter only because
leads to simpler definitions.

Definition 2.1. Let �N = {x ∈ Z
d :| x |≤ N } ⊂ V be the square box of size

2N + 1 at the origin. Let ξ be a boundary condition. Then the pressure of the
random cluster model with parameters q and p and boundary condition ξ on
L

d is

π (p, q) = lim
N→∞

1

| �N | ln Z ξ
�N

(q) (2.4)

In Definition 2.1, instead of choosing a fixed boundary condition ξ , one
can also think to allow a whole sequence ξN of boundary conditions, one for each
�N ∈ V. However, as shown in ref. 6 (see also ref. 5), this adds no extra generality.

Remark 2.2. It is easy to prove that this limit is independent on the boundary
condition. As a matter of fact, let ξ, ω ∈ �G and define ω

ξ

N by

ω
ξ

N (e) =
{

ω(e) if e ∈ E |�N

ξ (e) otherwise

Then, for all ξ

k1
�N

(ω1
N ) ≤ kξ

�N
(ωξ

N ) ≤ k0
�N

(ω0
N ) ≤ k1

�N
(ω1

N )+ |∂�N |
whence

Z1
�N

(p, q) ≤ Z ξ
�N

(p, q) ≤ Z0
�N

(p, q) ≤ Z1
�N

(p, q)q |∂�N |, if q ≥ 1

while for q < 1 we have simply to reverse all inequalities above. Now taking the
logarithms, dividing by |�N | and using that |∂�N | / |�N |→ 0 as N → ∞ we
are done.
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In order to define the connectivity functions, we give some preliminary definitions.
An animal in L

d is a connected subgraph g = (Vg, Eg) of L
d with vertex set Vg

finite and edge set Eg non empty. We’ll denote by A the set of animals in L
d and by

AN the set of animal in the box �N . We say that two animals g1 = (Vg1 , Eg1 ) and
g2 = (Vg2 , Eg2 ) in L

d are compatible and we write g1 ∼ g2 if Vg1 ∩ Vg2 = ∅ (hence
consequently Eg1 ∩ Eg2 = ∅). Otherwise we say that g1 and g2 are incompatible
and write g1 �∼ g2.

We are now ready to give the definition of connectivity functions.

Definition 2.3. Let X ⊂ Z
d finite. Let {�N }N∈N be a sequence of square boxes.

Let ξ be a boundary condition. Then we define, if it exists, the connectivity function
of the set X of the random cluster model with parameters q and p and boundary
condition ξ on L

d as

φp,q,ξ (X ) = lim
N→∞

∑

ω∈�
ξ
VN

: ∃g∈AN :

Eg∈O(ω), X⊂Vg

Pξ
�N

(ω) (2.5)

The truncated connectivity function of the set X of the random cluster model with
parameters q and p and boundary condition ξ is defined as

φf
p,q,ξ (X ) = lim

N→∞

∑

ω∈�
ξ
GN

: ∃g∈AN : Eg∈O(ω)

X⊂Vg , Vg∩ ∂int
v �N =∅

Pξ
�N

(ω) (2.6)

We recall that φf
p,q,ξ (X ) coincides with the connectivity function in the subcritical

phase (since in that case there is no infinite open cluster in the system).
For q > 1 is immediate to check that, for any boundary condition ξ

φp,q,0(X ) ≤ φp,q,ξ (X ) ≤ φp,q,1(X ) (2.7)

φf
p,q,0(X ) ≤ φf

p,q,ξ (X ) ≤ φf
p,q,1(X ) (2.8)

Hence if one is able to prove e.g. that φf
p,q,1(X ) = φf

p,q,0(X ) then he has also proven

for free that φf
p,q,1(X ) = φf

p,q,ξ (X ) = φf
p,q,0(X ) for any fixed boundary condition

ξ , as far as q ≥ 1.
For q < 1 we cannot arrive to the same conclusion, since (2.7) and (2.8) are

false when q < 1.
As it will be shown below we are able to prove using cluster expansion

techniques for all q > 0 that φp,q,1(X ) = φp,q,0(X ) for p sufficiently small and
that φf

p,q,1(X ) = φf
p,q,0(X ) for p sufficiently near 1. This result can be generalized,

at least in the subcritical phase, to a wider class of boundary conditions. For
example it is very easy to cover the case of boundary conditions such that the
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cardinality of each set of vertices in the boundary connected through the boundary
conditions itself is uniformly bounded. It is unclear for us if it is possible to further
generalize our expansions in order to include all boundary conditions in the whole
regime q > 0.

However, by preliminary calculations this would increase complexity of nota-
tions and definitions used in our expansion, so we preferred to focus our attention
to the cases ξ = 0, 1, which are the more interesting. Hence hereafter we treat
only free and wired boundary conditions.

Note finally that the percolation probability θ
ξ
p,q (0 ↔ ∞), i.e. the probability

that there is an open cluster passing through the origin 0 is defined in term of
connectivity functions as

θξ
p,q (0 ↔ ∞) = 1 − φf

p,q,ξ (X = {0}) (2.9)

The critical percolation probability pξ
c (q) at a fixed value of q for Z

d is the value
of p defined by

pξ
c (q) = sup

p∈[0,1]

{
p : θξ

p,q (0 ↔ ∞) = 0
}

(2.10)

3. THE SUBCRITICAL PHASE

3.1. Results in the Subcritical Phase

We begin this section stating our results in the subcritical regime.

Theorem 3.1. For any q > 0, let p so small that | p/(1 − p) |≤ rq with

rq = min

{
q

24d2
,

1

24d2

}

(3.1)

Then:

(a) The pressure of RCM on Z
d , defined in (2.4) is analytic as a function of p.

(b) The infinite volume connectivity functions φ
ξ
p,q (X ) with ξ = 0, 1 of the

RC M on Z
d defined in the limit (2.5) exist, are both equal to a function

φp,q (X ) which is analytic as a function of p.
Moreover | φp,q (X ) | admit the upper bound

| φp,q (X ) |≤ Cd

[
4d2

q

p

1 − p

]d tree(X )

(3.2)

where d tree(X ) is the tree distance of X in L
d and Cd is a constant.
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3.2. Polymer Expansion in the Subcritical Regime

We will use the shorter notations EN = E |�N , kξ
�N

= kξ

N , ω�N = ωN , �N =
��N .

Fix a X ⊂ �N − ∂ int
v �N (X does not touch the boundary). The finite volume

free and wired connectivity function can be rewritten as

φN
p,q,ξ=0,1(X ) = 1

Z̃ ξ

N (p, q)

∑

ω∈�
ξ
VN

: ∃g∈AN :

Eg⊂O(ω), X⊂Vg

λ|O(ωN )|qkξ

N (ω) (3.3)

where

Z̃ ξ

N (p, q) =
∑

ω∈�
ξ
�N

λ|O(ωN )|qkξ

N (ω) = (1 − p)|EN | Z ξ

N (p, q) (3.4)

and

λ = p

1 − p
(3.5)

We recall that k0
N (ω) is the number of open components of ωN plus isolated

vertices, while k1
N (ω) is the number of open connected component in ωN which

do not intersect the boundary plus isolated vertices which does belong to the
boundary ∂ int

v �N .
A configuration ω ∈ �

ξ

N is completely specified by the set of open edges
O(ωN ) in EN . Let now {E1, . . . , En} be the connected components of O(ωN ). To
each Ei we can associate an animal gi ∈ A such that Vgi = V |Ei , Egi = Ei . Then
to each ω ∈ �

ξ

N can be associated a (unordered) set of animals {g1, . . . , gn}ωN ⊂
AN such that ∪n

i=1 Egi = O(ωN ) and for all i, j ∈ In , gi ∼ g j . Observe that this
one to one correspondence ωN ↔ {g1, . . . , gn} yields

| O(ωN ) |=
n∑

i=1

| Egi | (3.6)

∑

ω∈�
ξ

N

(·) =
∑

n≥0

∑

{g1,...,gn }⊂AN
gi ∼g j

(·)
∑

ω∈�
ξ
GN

: ∃g∈AN :

Eg⊂O(ω), X⊂Vg

(·) =
∑

n≥1

∑

{g1,...,gn }⊂AN
gi ∼g j , X⊂Vg1

(·) (3.7)

where for n = 0 the unordered n-uple {g1, . . . , gn} is the empty set.
We will now rewrite the partition function (3.4) and the connectivity function

(3.3) in terms of the animals introduced above. We start by considering the case
ξ = 0. Let us denote by V iso

ωN
the subset of �N formed by the isolated vertices in

the configuration ωN , and let {g1, . . . , gn}ωN be the animals uniquely associated
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to O(ωN ). Then, by definition,

k0
N (ω) = n+ |V iso

ωN
|

and since

|V iso
ωN

|=|�N | −
n∑

i=1

|Vgi |

we obtain

k0
N (ω) =|�N | −

n∑

i=1

[|Vgi | −1] (3.8)

Using now (3.6), (3.7) and (3.8), the partition function Z̃0
VN

(p, q) defined in (3.4)
can be rewritten as

Z̃0
N (p, q) = q |�N |�0

N (p, q) (3.9)

where

�0
N (p, q) = 1 +

∑

n≥1

∑

{g1,...,gn }⊂AN
gi ∼g j

n∏

i=1

1

q |Vgi |−1
λ|Egi | (3.10)

and

φN
p,q,ξ=0(X ) = 1

�0
�N

(p, q)

∑

n≥1

∑

{g1,...,gn }⊂AN
gi ∼g j , X⊂Vg1

n∏

i=1

1

q |Vgi |−1
λ|Egi | (3.11)

The case ξ = 1 is slightly more involved. We first find an expression of k1
N (ω)

in terms of the animals {g1, . . . gn} uniquely associated to O(ωN ). The set In =
{1, 2, . . . , n} is naturally partitioned in the disjoint union of two sets Iint

n and I∂n
defined as

Iint
n = {i ∈ In : Vgi ∩ ∂ int

v �N = ∅} ; I∂n = {
i ∈ In : Vgi ∩ ∂ int

v �N �= ∅}

Denoting now shortly �N − ∂ int
v �N = V int

N and, for i ∈ I∂n , V int
gi

= Vgi − ∂ int
v �N ,

we have

k1
N (ω) =|V int

N | −
∑

i∈Iint
n

(|Vgi | −1) −
∑

i∈I∂n

|V int
gi

| (3.12)

Hence in the case ξ = 1 we get

Z̃1
N (p, q) = q |V int

N |�1
N (p, q)
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where

�1
N (p, q) = 1 +

∑

n≥1

∑

{g1,...,gn }⊂AN
gi ∼g j

∏

i∈Iint
n

1

q |Vgi |−1
λ|Egi |

∏

i∈I∂n

1

q |V int
gi

| λ
|Egi | (3.13)

and

φN
p,q,ξ=1(X ) = 1

�1
G|N

(p, q)

∑

n≥1

∑

{g1,...,gn }⊂AN
gi ∼g j , X⊂Vg1

∏

i∈Iint
n

1

q |Vgi |−1
λ|Egi |

∏

i∈I∂n

1

q |V int
gi

| λ
|Egi |

(3.14)
Given g = (Vg, Eg) ∈ A we define now the activity of g as

ρ(g) = q−(|Vg |−1)λ|Egi | (3.15)

We also define a ξ -dependent activity as

ρξ (g) =
{

ρ(g) if ξ = 0 or if ξ = 1 and Vg ∩ ∂ int
v �N = ∅

q−|V int
gi

|
λ|Egi | if ξ = 1 and Vg ∩ ∂ int

v �N �= ∅ (3.16)

Note that ρ0(g) is the restriction of ρ(g) to EN and when q < 1 we have, for all
g ∈ A, that

| ρξ (g) | ≤ | ρ(g) | whenever q < 1 (3.17)

We will use the shorthand notations

gn ≡ (g1, . . . , gn) ; ρξ (gn) ≡ ρξ (g1) · · · ρξ (gn) ρ(gn) ≡ ρ(g1) · · · ρ(gn)

Define further the hard core pair potential between two subsets Ri , R j as

U (gi , g j ) =
{

+∞ if gi �∼ g j

0 otherwise,
(3.18)

and denote shortly

U (gn) =
∑

1≤i< j≤n

U (gi , g j )

Then for ξ = 0, 1 we collect (3.10), (3.11), (3.13) and (3.14) as

φN
p,q,ξ (X ) = 1

�
ξ
�N

(p, q)

∑

n≥1

1

n!

∑

gn∈An
N

∃i∈In : gi ⊃X

ρξ (gn)e−U (gn ) (3.19)

and

�
ξ

N (p, q) =
[

1 +
∑

n≥1

1

n!

∑

gn∈An
N

ρξ (gn)e−U (gn )

]

(3.20)
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where In = {1, 2, · · · , n} and An
N is the n-times cartesian product of AN , i.e.

elements of An are ordered n-ples of elements of AN . The factor 1 in r.h.s. of
(3.20) is the contribution of the configuration in which all edges in �N are closed.
Observe that the partition function is rewritten as a hard core polymer gas partition
function in which the polymers are animals g of Z

d with activity ρξ (g).
It is now easy to rewrite this ratio (between two finite sums) as an infinite

series. In order to do that we define a new activity depending of a real parameter
α as

ρξ
α(g) =

{
(1 + α)ρξ (g) if X ⊂ Vg

ρξ (g) otherwise
(3.21)

and a new α-depending partition function

�
ξ

N ,α(p, q) =
[

1 +
∑

n≥1

1

n!

∑

gn∈An
N

ρξ
α(gn)e−U (gn )

]

(3.22)

where, of course ρξ
α(gn) = ρξ

α(g1) · · · ρξ
α(gn).

So, by construction

φN
p,q,ξ (X ) = d

dα
ln �

ξ

N ,α(p, q)

∣
∣
∣
∣
α=0

Now, by standard cluster expansion it is well known that

ln �
ξ

N ,α(p, q) =
∑

n≥1

1

n!

∑

gn∈An
N

ρξ
α(gn)�T (gn) (3.23)

where the Ursell coefficients �T (gn) are given by

�T (gn) =

⎧
⎪⎨

⎪⎩

∑

E∈P2(In )
(In ,E)∈Gn

∏

{i, j}∈E

(e−U (gi ,g j ) − 1) if n ≥ 2

1 if n = 1.

(3.24)

where Gn denotes the set of all connected graphs with vertex set In .
Deriving now the series in r.h.s. of (3.23) term by term with respect to α and

evaluating the result at α = 0, it is clear, see (3.21), that the only non vanishing
terms are those associated to configurations gn in which at least one among the
Ri ’s is such that X ⊂ gi . Thus we obtain

φN
p,q,ξ (X ) =

∞∑

n=1

1

n!

∑

gn∈An
N

∃i∈In : X⊂Vgi

k(gn)�T (gn)ρξ (gn) (3.25)

where k(gn) =| {i ∈ In : X ⊂ V gi } | . Note that k(gn) ≤ n.
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We also define a function on the whole cubic lattice L
d (hence not depending

on boundary conditions) as follows

φp,q (X ) =
∞∑

n=1

1

n!

∑

gn∈An

∃i∈In : X⊂Vgi

k(gn)�T (gn)ρ(gn) (3.26)

By the standard theory of polymer expansion the series above are absolutely
convergent series when the polymer activity is sufficiently small, accordingly to
the so called Kotecky-Preiss Condition(8) (see also ref. 13), namely

∑

n≥n0

fn(ρ)ean ≤ a (3.27)

where in this case n0 = ming∈A |Vg |=2 and

fn(ρ) = sup
x∈V

∑

g∈A:
x∈Vg , |Vg|=n

|ρ(g) | and fn(ρξ ) = sup
x∈�N

∑

g∈AN
x∈Vg , |Vg |=n

| ρξ (g)

3.3. Proofs of Theorem 3.1

Recalling now definitions (3.15) and (3.16), and using the rough bounds∑
g∈A: x∈Vg , |Vg |=n ≤ (2d)2(n−1) we get immediately

fn(ρ) ≤ (ε∗)n−1 ≤ εn−1 and fn(ρξ ) ≤ εn−1 (3.28)

where

ε∗ = 4d2λ

q
and ε = max

{
4d2λ

q
, 4d2λ

}

(3.29)

Thus, inserting (3.28) into (3.27) the Kotecky-Preiss condition is satisfied e.g.
choosing a = ln 2, by ε < 1/6. Hence recalling definition (3.29), we obtain that
the series (3.25) and (3.26) are absolutely convergent at least for all λ in the disk
|λ |≤ rq with

rq = min

{
q

24d2
,

1

24d2

}

(3.30)

Finally we prove the following theorem.

Theorem 3.2. For any fixed q > 0, ξ = 0, 1 and λ in the disk | λ |< rq

lim
N→∞

φN
p,q,ξ (X ) = φp,q (X )

where φp,q (X ) is the function defined in (3.26).
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Proof: Let us consider the case ξ = 1, since the case ξ = 0 is easier because
ρ0(g) = ρ(g).

|φp,q (X ) − φN
p,q,ξ=1(X ) |

≤
∞∑

n=1

1

n!

∑

gn∈An
∃k: X⊂Vgk
∃ j : g j �⊂�N

k(gn) | �T (gn) || ρ(gn) |

+
∞∑

n=1

1

n!

∑

gn∈An
N∃k: X⊂Vgk

∃ j : Vg j ∩∂int
v �N �=∅

k(gn) |�T (gn) ||ρ1(gn) − ρ(gn) |

Now, the first term of the r.h.s. of this inequality is, for ε < 1/6, a conver-
gent series clearly at least of the order (4d2λ/q)d(X,∂ int

v �N ) (here d(X, ∂ int
v �N ) =

min{| x − y |: x ∈ X, y ∈ ∂ int
v �N }), since one among the g1, . . . , gn has to con-

tain X and another has to intersect V − �N . Recall that the sets g1, . . . , gn are
pairwise incompatible due to the presence of the factor �T (Rn).

The second term can be treated similarly, using that | ρ1(gn) − ρ(gn) |≤ 2 |
ρ1(gn) |, and again one shows that it is of at least of the order (4d2δ)dG(X,∂ int

v �N ),
with δ = max{λ/q, λ}. Now as N → ∞ we have clearly that d(X, ∂ int

v �N ) → ∞.
The proof of the case ξ = 0 is the same, since just the first term in the inequality
above is present. �

An estimate from above of the exponential decay can be obtained immediately by
considering e.g.(3.19). One obtain, uniformly in N

φN
p,q,ξ (X ) = 1

�
ξ
�N

(p, q)

∑

n≥1

1

n!

∑

gn∈An
N

∃i∈In : gi ⊃X

ρξ (gn)e−U (gn )

≤
∑

g∈A: X⊂Vg

ρ(g) ≤ Cd

(
4d2 λ

q

)d tree(X )

for some constants Cd whenever |λ |< rq .
To prove part a), we recall that the pressure of the random cluster model is

given by (2.4). As it has been shown in the Remark 2.2, if the pressure exists, it is
independent on boundary conditions. Hence we can work here with free boundary
conditions ξ = 0 which are easier for small p. Now, by (3.4) and (3.9)

1

| �N | ln Z0
�N

(q) = 1

| �N | ln �0
�N

(q) − | EN |
�N

ln(1 − p) + ln q
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where we recall that �
ξ

N (p, q) is given explicitly by equation (3.20). Hence

π (p, q) = lim
N→∞

1

| �N | ln �
ξ

N (q) − Bd ln(1 − p) + ln q

Thus in order to show that the pressure exists we need to prove that the limit

�(p, q) = lim
N→∞

1

| �N | ln �0
N (q) =

∞∑

n=1

1

n!

∑

gn∈An
N

�T (gn)ρ(gn) (3.31)

exists, is independent of �N and has a finite radius of convergence. But this is
again an immediate consequence of standard polymer expansion once condition
(3.27) is verified.

4. THE SUPERCRITICAL PHASE

4.1. More Definitions and the Main Result in the Supercritical

Regime

In order to study the supercritical phase we introduce the concept of minimal
cut sets of Z

d .

Definition 4.1. A set of edges γ ⊂ E of L
d is called a cut set if the graph

L
d
γ = (V, E − γ ) is disconnected. A cut set γ ⊂ E is called a minimal cut set if

for all e ∈ γ the set γ − e is not a cut set. A finite minimal cut set γ ⊂ E in Z
d

will be called hereafter a fence.

A fence γ ⊂ E in Z
d has the property (see proposition 1 in ref. 15) that the

graph L
d
γ = (V, E − γ ) has only two connected components gγ = (Iγ , Eγ ) and

γ ext
c = (Oγ , Eext

γ ) the first being finite and second infinite with Eγ = E |Iγ and
Eext

γ = E |Oγ
. The set Iγ ⊂ V is called the vertex interior of the fence γ , and Oγ is

called the vertex exterior of the fence γ . Analogously the set Eγ ⊂ E is called the
edge interior of the fence γ , and Eext

γ is called the vertex exterior of the fence γ .
Note that for any fence γ of Z

d it follows directly from the definition that
Iγ ∩ Oγ = ∅ and Iγ ∪ Oγ = V. Moreover γ ∩ Eγ = γ ∩ Eγ = Eγ ∩ Eγ = ∅
and Eγ ∪ γ ∪ Eγ = E. From definition it also follows that ∂e Iγ = γ , Eγ = E |Iγ
and Eγ = E |Oγ

. Moreover, any edge e ∈ γ is such that e = {x, y} with x ∈ Iγ
and y ∈ Oγ . We finally denote by �G the set of all fences in G.

If γ be a fence in G and let x ∈ Iγ , then it is immediate to see that for
any infinite connected path of edges Eρ ⊂ E in Z

d starting at x we have that
Eρ ∩ γ �= ∅. We’ll use also the following property (see proposition 5 in ref. 15).
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Proposition 4.2. Let a = (Va, Ea) be an animal in L
d . Then there is a unique

fence γa such that γa ⊂ (∂ea)∗ and Iγa ⊃ Va. Moreover, if γ ⊂ (∂ea)∗ is also a
Peierls contour different from γa, then Iγ ∩ Va = ∅.

Given a fence γ ⊂ E and a vertex set X ⊂ V, we say that γ surrounds X and we
write γ

⊙
X if X ⊂ Iγ . We say that γ separates X and we write γ

⊗
X , if for any

animal a = (Va, Ea) such that X ⊂ Va , Ea ∩ γ �= ∅, or equivalently if it happens
that simultaneously X ∩ Oγ �= ∅ and X ∩ Iγ �= ∅.

Definition 4.3. Given X ⊂ V we denote by γ X = (I X
γ , E X

γ ) any fence γ with the
property X ⊂ Iγ and | Eγ | minimal. We call the number | Eγ | the fence-distance
of X and denote it as d fen(X ). Note that is X = {x, y} then d fen(X ) = 2(d − 1)
(| x − y | +1) + 2.

We are now in the position to state our results concerning the supercritical
regime of the Random Cluster model with free or wired boundary conditions and
for p sufficiently near 1.

Theorem 4.4. Let (1 − p) so small that | (1 − p)/p |< r̄q with

r̄q = min

{
1

5Cdq
,

1

5Cd

}

(4.1)

Then:

(a) The pressure of RCM on Z
d , defined in (2.4) is analytic as a function of p.

(b) The infinite volume connectivity functions of the RC M on Z
d with free

and wired boundary conditions, defined in the limit (2.5), exist and are
both equal to a function φf

p,q (X ) analytic as a function of p in the region
| (1 − p)/p |< r̄q .

Moreover | φf
p,q (X ) | admit the upper bound

| φf
p,q (X ) |≤ C ′

d [Bd (1 − p)/p]d fen(X )

where C ′
d and Bd are constant depending only on d.

Remark 4.5. The Theorem 4.4 implies that the percolation probability θp,q (0 ↔
∞) is analytic in p and is of the order 1 − (1 − p)2d , since θp,q (0 ↔ ∞) = 1 −
φf

p,q (X = {0}). In other words, the RCM on Z
d , for any q > 0, has a percolation

probability threshold strictly less than 1.
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4.2. Polymer Expansion in the Supercritical Regime

The finite volume free and wired finite connectivity functions for any X ⊂
�N − ∂ int

v �N can be written as

φ
f ,N
p,q,ξ (X ) = 1

Z̄ ξ

N (p, q)

∑

ω∈�
ξ
N : ∃g∈AN : Eg⊂O(ω)

X⊂Vg , Vg∩ ∂int
v �N =∅

λ|C(ωN )|qkξ

N (ω) (4.2)

where in this section

λ = 1 − p

p

and

Z̄ ξ

N (p, q) =
∑

ω∈�
ξ

N

λ|C(ωN )|qkξ

N (ω) = p|EN | Z ξ

N (p, q) (4.3)

We recall that the symbol C(ωN ) denotes the set of closed edges in EN once the
configuration ω ∈ �

ξ

N is given.
We associate now to each edge e ∈ E a (d − 1)-dimensional unit hypersquare

ϕ(e) (plaquette) which cuts perpendicularly the edge (thought immersed in R
d )

in the middle point. The vertices of the plaquette lay in the dual lattice of Z
d .

Note that the map ϕ : E
d → ϕ(Ed ), associating to each e the corresponding ϕ(e),

is a one-to-one from the set E
d into the set ϕ(Ed ) of plaquettes. Two edges e

and e′ are said dual connected if the corresponding plaquettes ϕ(e) and ϕ(e′) are
connected, i.e. share a (d − 2)-dimensional side. We say that two plaquettes are
dual connected if they share a (d − 2)-dimensional side. In particular in d = 3 a
plaquette turns out to be simple square and two plaquettes are connected if they
share a whole unit side.

Definition 4.6. A subset S ⊂ E is called a dual animal if it is finite and ϕ(S) is
a set of pairwise connected plaquettes. We say that two dual animals S and S′ are
compatible and we write S ∼ S′ if S ∪ S′ is not a dual animal (i.e. is not a set of
pairwise connected plaquettes). We will denote by E the set of all dual animals in
E. We will also denote by EN the set of dual animals in EN .

Remark 4.7. Any fence in Z
d is a dual animal (see proposition 2 in ref. 15).

Definition 4.8. Let S ⊂ E and let γ ⊂ S be a fence with vertex interior Iγ and
edge interior Eγ . We say that γ is minimal with respect to S if there is no other
fences γ ′ ⊂ S such that γ ′ ∩ γ �= ∅ and γ ′ ⊂ γ ∪ Eγ . Note that a minimal fence
γ can contain in its interior a fence γ ′ such that γ ∩ γ ′ = ∅. Given S ⊂ E we
denote by nS the number of fences which are minimal with respect to S.
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Remark 4.9. By the definition above and by definition 4.1, if S ⊂ E is finite,
then the number of finite connected component of (V, E − S) is exactly nS.

We will now give convenient expressions for k0
N (ω) and k1

N (ω). Let us consider first
the case k1

N (ω) which is the easier one. If we are using wired boundary conditions,
then k1

N (ω) is the number of connected components of O(ωN ) plus the isolated
vertices whose support is contained in �int

N . The fences associated with any of
such components is then totally contained in EN . This means that

k1
N (ω) = nC(ωN ) (4.4)

Using now (4.4) the partition function Z̄ ξ

N (p, q) defined in (4.3) can be rewritten
as

Z̄1
N (p, q) =

∑

ω∈�
ξ

N

λ|C(ωN )|qk1
N (ω) =

∑

ω∈�
ξ

N

λ|C(ωN )|qnC(ωN ) (4.5)

and

φ
f ,N
p,q,1(X ) = 1

Z̄1
N (p, q)

∑

ω∈�
ξ
N : ∃g∈A: Eg∈O(ω)

X⊂Vg , Vg∩ ∂int
v �N =∅

λ|C(ωN )|qnC(ωN )

The case k0
N (ω) is more involved. Observe that the partition function

Z̄0
N (p, q) =

∑

ω∈�0
N

λ|C(ωN )|qk0
N (ω)

is not really a partition function, since there is no term 1. This term should
correspond to the configuration in which all bonds are open, but in this case
k0

N (ω) = 1 so actually this term is q.
We thus define

Ẑ0
N (p, q) =

∑

ω∈�0
N

λ|C(ωN )|qk0
N (ω)−1 (4.6)

whence

q Ẑ0
N (p, q) = Z̄0

N (p, q) (4.7)

in such a way that Ẑ0
N (p, q) can be interpreted as a partition function with term

equal to 1 corresponding to the configuration in which all edges are open.
Now, by definition we can write

φ
f ,N
p,q,0(X ) = 1

Ẑ0
N (p, q)

∑

ω∈�
ξ
N : ∃g∈AN : Eg∈O(ω)

X⊂Vg , Vg∩ ∂int
v �N =∅

λ|C(ωN )|qk0
N (ω)−1
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We have now to write the explicit expression of k0
N (ω). In this case we have to

count the fences in the set C(ωN ) ∪ ∂e�N ≡ C̄(ωN ), and therefore we allow fences
γ̄ such that γ̄ ∩ ∂e�N �= ∅; in the latter case the set g ≡ γ̄ − ∂e�N will be called
from now on wall. Observe that a wall in EN is a dual animal. The number k0

N (ω)
is then simply

k0
N (ω) = nC̄(ωN )

Let us define for a given S ∈ EN

ñS =
{

nS if S ∪ ∂e�N /∈ E
nS∪∂e�N − 1 if S ∪ ∂e�N ∈ E

(4.8)

and its activity ρξ (S) as follows

ρξ (S) =
⎧
⎨

⎩

λ|S|qnS if ξ = 1

λ|S|qñS if ξ = 0
(4.9)

Note that

|ρξ (S) |≤ max{(|λ | q)|S|, |λ ||S|} (4.10)

The reason why we need to define for free boundary conditions the quantity
ñS is the following: for a fixed dual animal containing a wall, we can obtain
a fence from the union of the wall and the (closed) boundary in two different
ways, while we want to count the unit increasing of the number of connected
components of the configuration. This is the reason of the −1 in the definition of
ñS .

Define further the hard core pair potential between two dual animals Si , Sj

as

U (Si , Sj ) =
{+∞ if Si �∼ Sj

0 otherwise,
(4.11)

Use the shorthand notations

Sn = (S1, . . . , Sn) ; ρξ (Sn) ≡ ρξ (S1) · · · ρξ (Sn); U (Sn) =
∑

1≤i< j≤n

U (Si , Sj )

Then define the ξ dependent (for ξ = 0, 1) polymer gas partition function as

�
ξ

N (p, q) = 1 +
∑

n≥1

1

n!

∑

Sn∈(EN )n

ρξ (Sn)e−U (Sn ) (4.12)
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where (EN )n is the n-times cartesian product of EN . Note that, by construction

�1
N (p, q) = Z̄1

N (p, q), �0
N (p, q) = Ẑ0

N (p, q) (4.13)

and also

φ
f ,N
p,q,ξ (X ) = 1

�
ξ

N (p, q)

∑

n≥1

1

n!

∑

Sn∈(EN )n

Sn
⊙

X

ρξ (Sn)e−U (Sn ) (4.14)

where condition Sn
⊙

X on the sum above means that there must exist a fence
γ ⊂ ∪n

i=1Si such that γ
⊙

X and the set Ēγ ∩ [∪n
i=1Si ] does not contains fences

γ ′ such that γ ′ ⊗ X (here Ēγ = γ ∪ Eγ ).
We now rewrite the ratio (4.14) (between two finite sums) as a series. We

follow the ideas developed in refs. 2 and 3 for Z
d . So we will define objects more

general than dual animals which will be called polymers.

Definition 4.10. Let X ⊂ V finite, a set P ⊂ E is called X-R-connected if
P = ∪k

i=1Si with k ≥ 1 and the following holds: for all i = 1, 2, . . . , k Si ∈ E; for
all i, j = 1, 2, . . . , k, Si ∼ Sj and each Si contains a fence γi such that γi

⊙
Y

for some non empty Y ⊂ X.

We will denote by �X the set of all X -R-connected sets in E and by �X
N the set

of all X -R-connected sets in EN . We will also put E X = E ∪ �X and E X
N = EN ∪

�X
N .

Definition 4.11. A set P ∈ E X will be called a X-polymer (or simply polymer
when it is clear from the contest). We will say that two polymers Pi ∈ E X and Pj ∈
E X are compatible, and we write Pi ≈ Pj , if Pi ∪ Pj /∈ E X ; viceversa, Pi ∈ E X

and Pj ∈ E X are incompatible, and we write Pi �≈ Pj , if Pi ∪ Pj ∈ E X .

Note that if P ∈ �X and P ′ ∈ �X then necessarily P �≈ P ′.
If P ∈ �X and P = ∪k

i=1Si with k ≥ 2 we define the activity of the polymer
P as ρξ (P) = ∏k

i=1 ρξ (Si ). Define further the hard core pair potential between
two polymers Pi , Pj as

Ũ (Pi , Pj ) =
{ +∞ if Pi �≈ Pj

0 otherwise,
(4.15)

Again, we use the shorthand notations

Pn = (P1, . . . , Pn) ; ρξ (Pn) ≡ ρξ (P1) · · · ρξ (Pn); Ũ (Pn) =
∑

1≤i< j≤n

Ũ (Pi , Pj )
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Then, the r.h.s. of (4.14) can be rewritten as

φ
f ,N
p,q,ξ (X ) = 1

�
ξ

N (p, q)

∑

n≥1

1

n!

∑

Pn∈(EX
N )n

∃!i∈In : Pi
⊙

X

ρξ (Pn)e−Ũ (Pn ) (4.16)

with the hard core polymer gas partition function given by

�
ξ

N (p, q) = 1 +
∑

n≥1

1

n!

∑

Pn∈(E X
N )n

ρξ (Pn)e−Ũ (Pn )

Define now, for α ∈ R and P ∈ E X

ρξ
α(P) =

⎧
⎨

⎩

(1 + α)ρξ (P) if P ∈ �X and P
⊙

X

ρξ (P) otherwise

then

φf
p,q,ξ,N (X ) = d

dα
ln �

ξ

N (p, q, α)

∣
∣
∣
∣
α=0

(4.17)

where

�
ξ

N (p, q, α) = 1 +
∑

n≥1

1

n!

∑

Pn∈(E X
N )n

ρξ
α(Pn)e−Ũ (Pn ) (4.18)

where of course ρξ
α(Pn) = ρξ

α(P1) · · · ρξ
α(Pn).

The formal power series for ln �
ξ

N (p, q, α) is given by

ln �
ξ

N (p, q, α) =
∑

n≥1

1

n!

∑

Pn∈(E X
N )n

�T (Pn)ρξ
α(Pn) (4.19)

where here the Ursell factor �T (Pn) is defined as in (3.24) with Ũ in place of U :

�T (Pn) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

E∈P2(In )
(In ,E)∈Gn

∏

{i, j}∈E

(e−Ũ (Pi ,Pj ) − 1) if n ≥ 2

1 if n = 1.

(4.20)

where we recall that Gn denotes the set of all connected graphs with vertex set In .
Thus, inserting (4.19) in (4.17) we have an explicit (formal) expansion for
φ

f ,N
p,q,ξ (X ) given by

φ
f ,N
p,q,ξ (X ) =

∑

n≥1

1

n!

∑

Pn∈(EX
N )n

∃i∈In : Pi
⊙

X

k(Pn)�T (Pn)ρξ (Pn) (4.21)



1306 Procacci and Scoppola

where again k(Pn) =|{i ∈ In : Pi
⊙

X} |.
We also define

φf
p,q (X ) =

∑

n≥1

1

n!

∑

(Pn ∈(EX )n

∃i∈In : Pi
⊙

X

k(Pn)�T (Pn)ρ(Pn) (4.22)

where

ρ(Pn) = ρ(P1) · · · ρ(Pn) (4.23)

which, as we will see, represents an absolutely convergent expansion for small
1 − p for the infinite volume finite connectivity function.

4.3. Proof of Theorem 4.4

Now again by standard polymer expansion (4.21) and (4.22) are absolute
convergent series provided the Kotecky and Preiss condition is satisfied. The
Kotecky-Preiss condition is now

∑

n≥n0

φn(ρ)ean < a (4.24)

where n0 = minS∈E{| S |} and

φn(ρ) = sup
e∈E

∑

S∈E
e∈S, |S|=n

|ρ(S) | +
∑

P∈�X

|P|=n

|ρ(P) |

It is easy to estimate φn(ρ). We have

sup
e∈E

∑

S∈E
e∈S, |S|=n

|ρ(S) | +
∑

P∈�X

|P|=n

|ρ(P) | ≤ ε̃ n

⎡

⎢
⎣sup

e∈E

∑

S∈E
e∈S, |S|=n

1 +
∑

P∈�X : |P|=n

1

⎤

⎥
⎦

where, for any λ complex and any q > 0

ε̃ = max{| λ | q, | λ |} (4.25)

To get the estimates
∑

S∈E, e∈S, |S|=n 1 ≤ An
d , and

∑
P∈�X : |P|=n 1 ≤ Bn

d we can
proceed as in refs. 2 and 3. Thus, for Cd = Ad + Bd

φn(ρ) ≤ (Cd ε̃)n (4.26)

Inserting (4.26) into (4.24) we have that the Kotecky-Preiss condition is satisfied if
e.g. Cd ε̃ < 1/5 Hence recalling (4.25), we obtain that the series (4.21) and (4.22)
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are absolutely convergent at least for all λ in the disk | λ |≤ r̄q with

r̄q = min

{
1

5Cdq
,

1

5Cd

}

(4.27)

Now we prove the following lemma which concludes the proof of Theorem 4.4

Lemma 4.12. For any fixed q > 0 and p such that 2eδ < 1, and ξ = 0, 1

lim
N→∞

φ
f ,N
p,q,ξ (X ) = φf

p,q (X )

where φf
p,q (X ) is the function defined in (4.22).

Proof. We will consider only the case ξ = 0, which is the less trivial one.

| φf
p,q (X ) − φ

f ,N
p,q,ξ=0(X ) |

≤
∣
∣
∣
∣
∣

∑

n≥1

1

n!

[
∑

Pn∈(EX )n

∃i∈In : Pi
⊙

X

k(Pn)�T (Pn)ρ(Pn) −
∑

Pn ∈(EX
N )n

∃i∈In : Pi
⊙

X

k(Pn)�T (Pn)ρ0(Pn)

]∣
∣
∣
∣
∣

≤
∞∑

n=1

1

n!

∑

Pn ∈(EX )n

∃i∈In :Pi
⊙

X
∃ j∈In : Pj �⊂EN

k(Pn) | �T (Pn) || ρ(Pn) |

+2
∞∑

n=1

1

n!

∑

Pn∈(EX
N )n

∃i∈In : Pi
⊙

X
∃ j∈In : Pj contains a wall

k(Pn) | �T (Pn) || ρ(Pn) |

where we have used that | ρ0(Pn) − ρ(Pn) |≤ 2 | ρ(Pn) |, due to the bound inde-
pendent on ξ (4.10).

Now, for 5Cd ε̃ < 1, the two series above are absolutely convergent. Consider
the first term of the r.h.s. of this inequality. Let us split this term in two series as
follows

∞∑

n=1

1

n!

∑

Pn∈(EX )n

∃i∈In : Pi
⊙

X
∃ j∈In : Pj �⊂EN

k(Pn) |�T (Pn) ||ρ(Pn) |= A1 + A2
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with

A1 =
∞∑

n=1

1

n!

∑

Pn∈(EX )n

∃i∈In : Pi
⊙

X
∃ j∈In : Pj �⊂EN , Pi �=Pj

k(Pn) |�T (Pn) ||ρ(Pn) |

and

A2 =
∞∑

n=1

1

n!

∑

Pn∈(EX )n

∃i∈In : Pi
⊙

X
∃ j∈In : Pj �⊂EN , Pi =Pj

k(Pn) |�T (Pn) ||ρ(Pn) |

The factor A1 admits the bound A1 ≤ Const(Cd ε̃)n0 where the lowest order n0 is

n0 = min
Pn∈(EX )n , G(Pn )∈Gn

∃i∈In : Pi
⊙

X
∃ j∈In : Pj �⊂EN , Pi �=Pj

{
n∑

i=1

| Pi |
}

where the condition G(Pn) ∈ Gn is due the presence the factor �T (Pn). Hence

n0 ≥ min
P1

⊙
X, P2∈EX

P2 �⊂EN ,P1 �=P2

{| P1 | + | P2 | +d(P1, P2)}

where d(P1, P2) = min{| x − y |: {x} ∩ P1 �= 0, {y} ∩ P2 �= 0}. Then, in the worst
of hypothesis, n0 is at least

n0 ≥ min
γ∈�G , γ

⊙
X,

S∈EG, S �⊂EN
γ �=S

{|γ | + | S | +d(γ, S)}

It is now easy to see that the r.h.s. of inequality above is a divergent quantity when
N → ∞.

So we have shown that A1 → 0 as N → ∞.
Concerning A2 we have similarly

A2 ≤ Const′(Cd ε̃)n′
0

where now

n′
0 = min

Pn∈(EX
G

)n

∃i∈In : Pi
⊙

X
∃ j∈In : Pj �⊂EN , Pi =Pj

{
n∑

i=1

| Pi |
}

≥ min
P

⊙
X

P �⊂EN

{| P |}

this can be easily bounded from below as

n′
0 ≥ min

γ∈�G : γ
⊙

X
P �⊂EN

{|γ |}
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Similarly to the previous case, we have that the r.h.s. of the inequality above has to
diverge when N → ∞. �

To prove part a of Theorem 4.4, we have just to replicate, mutatis mutandis, the
same reasoning developed at the end of Section 4.3. Finally, concerning the upper
bound for the exponential decay of connectivities, we immediately obtain from
(4.14),

φf
p,q,ξ (X ) = 1

�
ξ

N (p, q)

∑

n≥1

1

n!

∑

Sn∈(EN )n

Sn
⊙

X

ρξ (Sn)e−U (Sn )

≤
∑

S∈E
E

⊙
X

ρξ (S) ≤ C ′
d (Bdλ)

fen(X )d

thus the inverse correlation length behaves as 2(d − 1) | ln(1 − p) | +O(1) for
small p.
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Note Added

Some days before the submission of the paper we were aware about the
interesting result on uniqueness of the measure of the Random Cluster Model on
Z

d in the two regions p small and 1 − p small for q < 1 contained in the new
monograph by G. Grimmett to be published by Springer.(7)
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